Metamath Proof Explorer


Theorem equvinva

Description: A modified version of the forward implication of equvinv adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018)

Ref Expression
Assertion equvinva x = y z x = z y = z

Proof

Step Hyp Ref Expression
1 ax6evr z y = z
2 equtr x = y y = z x = z
3 2 ancrd x = y y = z x = z y = z
4 3 eximdv x = y z y = z z x = z y = z
5 1 4 mpi x = y z x = z y = z