Metamath Proof Explorer


Theorem eqvf

Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eqvf.1 _ x A
Assertion eqvf A = V x x A

Proof

Step Hyp Ref Expression
1 eqvf.1 _ x A
2 nfcv _ x V
3 1 2 cleqf A = V x x A x V
4 vex x V
5 4 tbt x A x A x V
6 5 albii x x A x x A x V
7 3 6 bitr4i A = V x x A