Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
eqvf
Next ⟩
abv
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqvf
Description:
The universe contains every set.
(Contributed by
BJ
, 15-Jul-2021)
Ref
Expression
Hypothesis
eqvf.1
⊢
Ⅎ
_
x
A
Assertion
eqvf
⊢
A
=
V
↔
∀
x
x
∈
A
Proof
Step
Hyp
Ref
Expression
1
eqvf.1
⊢
Ⅎ
_
x
A
2
nfcv
⊢
Ⅎ
_
x
V
3
1
2
cleqf
⊢
A
=
V
↔
∀
x
x
∈
A
↔
x
∈
V
4
vex
⊢
x
∈
V
5
4
tbt
⊢
x
∈
A
↔
x
∈
A
↔
x
∈
V
6
5
albii
⊢
∀
x
x
∈
A
↔
∀
x
x
∈
A
↔
x
∈
V
7
3
6
bitr4i
⊢
A
=
V
↔
∀
x
x
∈
A