Metamath Proof Explorer


Theorem eqvincf

Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003)

Ref Expression
Hypotheses eqvincf.1 _ x A
eqvincf.2 _ x B
eqvincf.3 A V
Assertion eqvincf A = B x x = A x = B

Proof

Step Hyp Ref Expression
1 eqvincf.1 _ x A
2 eqvincf.2 _ x B
3 eqvincf.3 A V
4 3 eqvinc A = B y y = A y = B
5 1 nfeq2 x y = A
6 2 nfeq2 x y = B
7 5 6 nfan x y = A y = B
8 nfv y x = A x = B
9 eqeq1 y = x y = A x = A
10 eqeq1 y = x y = B x = B
11 9 10 anbi12d y = x y = A y = B x = A x = B
12 7 8 11 cbvexv1 y y = A y = B x x = A x = B
13 4 12 bitri A = B x x = A x = B