Metamath Proof Explorer


Theorem eqvreldisj1

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 , eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 3-Dec-2024)

Ref Expression
Assertion eqvreldisj1 EqvRel R x A / R y A / R x = y x y =

Proof

Step Hyp Ref Expression
1 simpl EqvRel R x A / R y A / R EqvRel R
2 simprl EqvRel R x A / R y A / R x A / R
3 simprr EqvRel R x A / R y A / R y A / R
4 1 2 3 qsdisjALTV EqvRel R x A / R y A / R x = y x y =
5 4 ralrimivva EqvRel R x A / R y A / R x = y x y =