Metamath Proof Explorer


Theorem eqvreldisj2

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion eqvreldisj2 EqvRel R ElDisj A / R

Proof

Step Hyp Ref Expression
1 eqvreldisj1 EqvRel R x A / R y A / R x = y x y =
2 dfeldisj5 ElDisj A / R x A / R y A / R x = y x y =
3 1 2 sylibr EqvRel R ElDisj A / R