Metamath Proof Explorer


Theorem eqvrelqseqdisj2

Description: Implication of eqvreldisj2 , lemma for The Main Theorem of Equivalences mainer . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj2 EqvRel R B / R = A ElDisj A

Proof

Step Hyp Ref Expression
1 eqvreldisj2 EqvRel R ElDisj B / R
2 1 adantr EqvRel R B / R = A ElDisj B / R
3 eldisjeq B / R = A ElDisj B / R ElDisj A
4 3 adantl EqvRel R B / R = A ElDisj B / R ElDisj A
5 2 4 mpbid EqvRel R B / R = A ElDisj A