Metamath Proof Explorer


Theorem eqvrelqseqdisj3

Description: Implication of eqvreldisj3 , lemma for the Member Partition Equivalence Theorem mpet3 . (Contributed by Peter Mazsa, 27-Oct-2020) (Revised by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj3 EqvRel R B / R = A Disj E -1 A

Proof

Step Hyp Ref Expression
1 eqvreldisj3 EqvRel R Disj E -1 B / R
2 1 adantr EqvRel R B / R = A Disj E -1 B / R
3 reseq2 B / R = A E -1 B / R = E -1 A
4 3 disjeqd B / R = A Disj E -1 B / R Disj E -1 A
5 4 adantl EqvRel R B / R = A Disj E -1 B / R Disj E -1 A
6 2 5 mpbid EqvRel R B / R = A Disj E -1 A