Metamath Proof Explorer


Theorem eqvrelqseqdisj5

Description: Lemma for the Partition-Equivalence Theorem pet2 . (Contributed by Peter Mazsa, 15-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj5 EqvRel R B / R = A Disj S E -1 A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3 EqvRel R B / R = A Disj E -1 A
2 disjimxrn Disj E -1 A Disj S E -1 A
3 1 2 syl EqvRel R B / R = A Disj S E -1 A