Step |
Hyp |
Ref |
Expression |
1 |
|
ercgrg.p |
|
2 |
|
df-cgrg |
|
3 |
2
|
relmptopab |
|
4 |
3
|
a1i |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 5 6
|
iscgrg |
|
8 |
7
|
biimpa |
|
9 |
8
|
simpld |
|
10 |
9
|
ancomd |
|
11 |
8
|
simprd |
|
12 |
11
|
simpld |
|
13 |
12
|
eqcomd |
|
14 |
|
simpl |
|
15 |
|
simprl |
|
16 |
12
|
adantr |
|
17 |
15 16
|
eleqtrrd |
|
18 |
|
simprr |
|
19 |
18 16
|
eleqtrrd |
|
20 |
11
|
simprd |
|
21 |
20
|
r19.21bi |
|
22 |
21
|
r19.21bi |
|
23 |
14 17 19 22
|
syl21anc |
|
24 |
23
|
eqcomd |
|
25 |
24
|
ralrimivva |
|
26 |
13 25
|
jca |
|
27 |
1 5 6
|
iscgrg |
|
28 |
27
|
adantr |
|
29 |
10 26 28
|
mpbir2and |
|
30 |
9
|
simpld |
|
31 |
30
|
adantrr |
|
32 |
1 5 6
|
iscgrg |
|
33 |
32
|
biimpa |
|
34 |
33
|
adantrl |
|
35 |
34
|
simpld |
|
36 |
35
|
simprd |
|
37 |
31 36
|
jca |
|
38 |
8
|
adantrr |
|
39 |
38
|
simprd |
|
40 |
39
|
simpld |
|
41 |
34
|
simprd |
|
42 |
41
|
simpld |
|
43 |
40 42
|
eqtrd |
|
44 |
39
|
simprd |
|
45 |
44
|
r19.21bi |
|
46 |
45
|
r19.21bi |
|
47 |
46
|
anasss |
|
48 |
|
simpl |
|
49 |
|
simprl |
|
50 |
40
|
adantr |
|
51 |
49 50
|
eleqtrd |
|
52 |
|
simprr |
|
53 |
52 50
|
eleqtrd |
|
54 |
41
|
simprd |
|
55 |
54
|
r19.21bi |
|
56 |
55
|
r19.21bi |
|
57 |
48 51 53 56
|
syl21anc |
|
58 |
47 57
|
eqtrd |
|
59 |
58
|
ralrimivva |
|
60 |
43 59
|
jca |
|
61 |
1 5 6
|
iscgrg |
|
62 |
61
|
adantr |
|
63 |
37 60 62
|
mpbir2and |
|
64 |
|
pm4.24 |
|
65 |
|
eqid |
|
66 |
|
eqidd |
|
67 |
66
|
rgen2 |
|
68 |
65 67
|
pm3.2i |
|
69 |
68
|
biantru |
|
70 |
64 69
|
bitri |
|
71 |
1 5 6
|
iscgrg |
|
72 |
70 71
|
bitr4id |
|
73 |
4 29 63 72
|
iserd |
|