Metamath Proof Explorer


Theorem ercl2

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersym.1 φ R Er X
ersym.2 φ A R B
Assertion ercl2 φ B X

Proof

Step Hyp Ref Expression
1 ersym.1 φ R Er X
2 ersym.2 φ A R B
3 1 2 ersym φ B R A
4 1 3 ercl φ B X