Metamath Proof Explorer


Theorem erclwwlk

Description: .~ is an equivalence relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
Assertion erclwwlk ˙ Er ClWWalks G

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
2 1 erclwwlkrel Rel ˙
3 1 erclwwlksym x ˙ y y ˙ x
4 1 erclwwlktr x ˙ y y ˙ z x ˙ z
5 1 erclwwlkref x ClWWalks G x ˙ x
6 2 3 4 5 iseri ˙ Er ClWWalks G