Metamath Proof Explorer


Theorem erclwwlkeq

Description: Two classes are equivalent regarding .~ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
Assertion erclwwlkeq U X W Y U ˙ W U ClWWalks G W ClWWalks G n 0 W U = W cyclShift n

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙ = u w | u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n
2 eleq1 u = U u ClWWalks G U ClWWalks G
3 2 adantr u = U w = W u ClWWalks G U ClWWalks G
4 eleq1 w = W w ClWWalks G W ClWWalks G
5 4 adantl u = U w = W w ClWWalks G W ClWWalks G
6 fveq2 w = W w = W
7 6 oveq2d w = W 0 w = 0 W
8 7 adantl u = U w = W 0 w = 0 W
9 simpl u = U w = W u = U
10 oveq1 w = W w cyclShift n = W cyclShift n
11 10 adantl u = U w = W w cyclShift n = W cyclShift n
12 9 11 eqeq12d u = U w = W u = w cyclShift n U = W cyclShift n
13 8 12 rexeqbidv u = U w = W n 0 w u = w cyclShift n n 0 W U = W cyclShift n
14 3 5 13 3anbi123d u = U w = W u ClWWalks G w ClWWalks G n 0 w u = w cyclShift n U ClWWalks G W ClWWalks G n 0 W U = W cyclShift n
15 14 1 brabga U X W Y U ˙ W U ClWWalks G W ClWWalks G n 0 W U = W cyclShift n