Description: .~ is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erclwwlkn.w | |
|
erclwwlkn.r | |
||
Assertion | erclwwlknsym | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | |
|
2 | erclwwlkn.r | |
|
3 | 1 2 | erclwwlkneqlen | |
4 | 1 2 | erclwwlkneq | |
5 | simpl2 | |
|
6 | simpl1 | |
|
7 | eqid | |
|
8 | 7 | clwwlknbp | |
9 | eqcom | |
|
10 | 9 | biimpi | |
11 | 8 10 | simpl2im | |
12 | 11 1 | eleq2s | |
13 | 12 | adantr | |
14 | 13 | adantr | |
15 | 7 | clwwlknwrd | |
16 | 15 1 | eleq2s | |
17 | 16 | adantl | |
18 | 17 | adantr | |
19 | 18 | adantl | |
20 | simprr | |
|
21 | 19 20 | cshwcshid | |
22 | oveq2 | |
|
23 | oveq2 | |
|
24 | 23 | adantl | |
25 | 22 24 | sylan9eq | |
26 | 25 | eleq2d | |
27 | 26 | anbi1d | |
28 | 22 | adantr | |
29 | 28 | rexeqdv | |
30 | 21 27 29 | 3imtr4d | |
31 | 14 30 | mpancom | |
32 | 31 | expd | |
33 | 32 | rexlimdv | |
34 | 33 | ex | |
35 | 34 | com23 | |
36 | 35 | 3impia | |
37 | 36 | imp | |
38 | oveq2 | |
|
39 | 38 | eqeq2d | |
40 | 39 | cbvrexvw | |
41 | 37 40 | sylibr | |
42 | 5 6 41 | 3jca | |
43 | 1 2 | erclwwlkneq | |
44 | 43 | ancoms | |
45 | 42 44 | imbitrrid | |
46 | 45 | expd | |
47 | 4 46 | sylbid | |
48 | 3 47 | mpdd | |
49 | 48 | el2v | |