| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn.w |
|
| 2 |
|
erclwwlkn.r |
|
| 3 |
1 2
|
erclwwlkneqlen |
|
| 4 |
1 2
|
erclwwlkneq |
|
| 5 |
|
simpl2 |
|
| 6 |
|
simpl1 |
|
| 7 |
|
eqid |
|
| 8 |
7
|
clwwlknbp |
|
| 9 |
|
eqcom |
|
| 10 |
9
|
biimpi |
|
| 11 |
8 10
|
simpl2im |
|
| 12 |
11 1
|
eleq2s |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantr |
|
| 15 |
7
|
clwwlknwrd |
|
| 16 |
15 1
|
eleq2s |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simprr |
|
| 21 |
19 20
|
cshwcshid |
|
| 22 |
|
oveq2 |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
adantl |
|
| 25 |
22 24
|
sylan9eq |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
anbi1d |
|
| 28 |
22
|
adantr |
|
| 29 |
28
|
rexeqdv |
|
| 30 |
21 27 29
|
3imtr4d |
|
| 31 |
14 30
|
mpancom |
|
| 32 |
31
|
expd |
|
| 33 |
32
|
rexlimdv |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
com23 |
|
| 36 |
35
|
3impia |
|
| 37 |
36
|
imp |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
39
|
cbvrexvw |
|
| 41 |
37 40
|
sylibr |
|
| 42 |
5 6 41
|
3jca |
|
| 43 |
1 2
|
erclwwlkneq |
|
| 44 |
43
|
ancoms |
|
| 45 |
42 44
|
imbitrrid |
|
| 46 |
45
|
expd |
|
| 47 |
4 46
|
sylbid |
|
| 48 |
3 47
|
mpdd |
|
| 49 |
48
|
el2v |
|