Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|
2 |
|
erclwwlkn.r |
|
3 |
|
vex |
|
4 |
|
vex |
|
5 |
|
vex |
|
6 |
1 2
|
erclwwlkneqlen |
|
7 |
6
|
3adant3 |
|
8 |
1 2
|
erclwwlkneqlen |
|
9 |
8
|
3adant1 |
|
10 |
1 2
|
erclwwlkneq |
|
11 |
10
|
3adant1 |
|
12 |
1 2
|
erclwwlkneq |
|
13 |
12
|
3adant3 |
|
14 |
|
simpr1 |
|
15 |
|
simplr2 |
|
16 |
|
oveq2 |
|
17 |
16
|
eqeq2d |
|
18 |
17
|
cbvrexvw |
|
19 |
|
oveq2 |
|
20 |
19
|
eqeq2d |
|
21 |
20
|
cbvrexvw |
|
22 |
|
eqid |
|
23 |
22
|
clwwlknbp |
|
24 |
|
eqcom |
|
25 |
24
|
biimpi |
|
26 |
23 25
|
simpl2im |
|
27 |
26 1
|
eleq2s |
|
28 |
27
|
ad2antlr |
|
29 |
23
|
simpld |
|
30 |
29 1
|
eleq2s |
|
31 |
30
|
ad2antlr |
|
32 |
31
|
adantl |
|
33 |
|
simprr |
|
34 |
32 33
|
cshwcsh2id |
|
35 |
|
oveq2 |
|
36 |
|
oveq2 |
|
37 |
36
|
eqcoms |
|
38 |
37
|
adantr |
|
39 |
38
|
adantl |
|
40 |
35 39
|
sylan9eq |
|
41 |
40
|
eleq2d |
|
42 |
41
|
anbi1d |
|
43 |
35
|
eleq2d |
|
44 |
43
|
anbi1d |
|
45 |
44
|
adantr |
|
46 |
42 45
|
anbi12d |
|
47 |
35
|
rexeqdv |
|
48 |
47
|
adantr |
|
49 |
34 46 48
|
3imtr4d |
|
50 |
28 49
|
mpancom |
|
51 |
50
|
exp5l |
|
52 |
51
|
imp41 |
|
53 |
52
|
rexlimdva |
|
54 |
53
|
ex |
|
55 |
54
|
rexlimdva |
|
56 |
21 55
|
syl7bi |
|
57 |
18 56
|
syl5bi |
|
58 |
57
|
exp31 |
|
59 |
58
|
com15 |
|
60 |
59
|
impcom |
|
61 |
60
|
3adant1 |
|
62 |
61
|
impcom |
|
63 |
62
|
com13 |
|
64 |
63
|
3impia |
|
65 |
64
|
impcom |
|
66 |
14 15 65
|
3jca |
|
67 |
1 2
|
erclwwlkneq |
|
68 |
67
|
3adant2 |
|
69 |
66 68
|
syl5ibrcom |
|
70 |
69
|
exp31 |
|
71 |
70
|
com24 |
|
72 |
71
|
ex |
|
73 |
72
|
com4t |
|
74 |
13 73
|
sylbid |
|
75 |
74
|
com25 |
|
76 |
11 75
|
sylbid |
|
77 |
9 76
|
mpdd |
|
78 |
77
|
com24 |
|
79 |
7 78
|
mpdd |
|
80 |
79
|
impd |
|
81 |
3 4 5 80
|
mp3an |
|