| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn.w |
|
| 2 |
|
erclwwlkn.r |
|
| 3 |
|
vex |
|
| 4 |
|
vex |
|
| 5 |
|
vex |
|
| 6 |
1 2
|
erclwwlkneqlen |
|
| 7 |
6
|
3adant3 |
|
| 8 |
1 2
|
erclwwlkneqlen |
|
| 9 |
8
|
3adant1 |
|
| 10 |
1 2
|
erclwwlkneq |
|
| 11 |
10
|
3adant1 |
|
| 12 |
1 2
|
erclwwlkneq |
|
| 13 |
12
|
3adant3 |
|
| 14 |
|
simpr1 |
|
| 15 |
|
simplr2 |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
cbvrexvw |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
cbvrexvw |
|
| 22 |
|
eqid |
|
| 23 |
22
|
clwwlknbp |
|
| 24 |
|
eqcom |
|
| 25 |
24
|
biimpi |
|
| 26 |
23 25
|
simpl2im |
|
| 27 |
26 1
|
eleq2s |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
23
|
simpld |
|
| 30 |
29 1
|
eleq2s |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
31
|
adantl |
|
| 33 |
|
simprr |
|
| 34 |
32 33
|
cshwcsh2id |
|
| 35 |
|
oveq2 |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eqcoms |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
adantl |
|
| 40 |
35 39
|
sylan9eq |
|
| 41 |
40
|
eleq2d |
|
| 42 |
41
|
anbi1d |
|
| 43 |
35
|
eleq2d |
|
| 44 |
43
|
anbi1d |
|
| 45 |
44
|
adantr |
|
| 46 |
42 45
|
anbi12d |
|
| 47 |
35
|
rexeqdv |
|
| 48 |
47
|
adantr |
|
| 49 |
34 46 48
|
3imtr4d |
|
| 50 |
28 49
|
mpancom |
|
| 51 |
50
|
exp5l |
|
| 52 |
51
|
imp41 |
|
| 53 |
52
|
rexlimdva |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
rexlimdva |
|
| 56 |
21 55
|
syl7bi |
|
| 57 |
18 56
|
biimtrid |
|
| 58 |
57
|
exp31 |
|
| 59 |
58
|
com15 |
|
| 60 |
59
|
impcom |
|
| 61 |
60
|
3adant1 |
|
| 62 |
61
|
impcom |
|
| 63 |
62
|
com13 |
|
| 64 |
63
|
3impia |
|
| 65 |
64
|
impcom |
|
| 66 |
14 15 65
|
3jca |
|
| 67 |
1 2
|
erclwwlkneq |
|
| 68 |
67
|
3adant2 |
|
| 69 |
66 68
|
syl5ibrcom |
|
| 70 |
69
|
exp31 |
|
| 71 |
70
|
com24 |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
com4t |
|
| 74 |
13 73
|
sylbid |
|
| 75 |
74
|
com25 |
|
| 76 |
11 75
|
sylbid |
|
| 77 |
9 76
|
mpdd |
|
| 78 |
77
|
com24 |
|
| 79 |
7 78
|
mpdd |
|
| 80 |
79
|
impd |
|
| 81 |
3 4 5 80
|
mp3an |
|