Metamath Proof Explorer


Theorem ercnv

Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ercnv R Er A R -1 = R

Proof

Step Hyp Ref Expression
1 errel R Er A Rel R
2 relcnv Rel R -1
3 id R Er A R Er A
4 3 ersymb R Er A y R x x R y
5 vex x V
6 vex y V
7 5 6 brcnv x R -1 y y R x
8 df-br x R -1 y x y R -1
9 7 8 bitr3i y R x x y R -1
10 df-br x R y x y R
11 4 9 10 3bitr3g R Er A x y R -1 x y R
12 11 eqrelrdv2 Rel R -1 Rel R R Er A R -1 = R
13 2 12 mpanl1 Rel R R Er A R -1 = R
14 1 13 mpancom R Er A R -1 = R