Metamath Proof Explorer


Theorem ercpbllem

Description: Lemma for ercpbl . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ ˙ Er V
ercpbl.v φ V W
ercpbl.f F = x V x ˙
ercpbllem.1 φ A V
Assertion ercpbllem φ F A = F B A ˙ B

Proof

Step Hyp Ref Expression
1 ercpbl.r φ ˙ Er V
2 ercpbl.v φ V W
3 ercpbl.f F = x V x ˙
4 ercpbllem.1 φ A V
5 1 2 3 divsfval φ F A = A ˙
6 1 2 3 divsfval φ F B = B ˙
7 5 6 eqeq12d φ F A = F B A ˙ = B ˙
8 1 4 erth φ A ˙ B A ˙ = B ˙
9 7 8 bitr4d φ F A = F B A ˙ B