Metamath Proof Explorer


Theorem erdisj

Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion erdisj R Er X A R = B R A R B R =

Proof

Step Hyp Ref Expression
1 neq0 ¬ A R B R = x x A R B R
2 simpl R Er X x A R B R R Er X
3 elinel1 x A R B R x A R
4 3 adantl R Er X x A R B R x A R
5 vex x V
6 ecexr x A R A V
7 4 6 syl R Er X x A R B R A V
8 elecg x V A V x A R A R x
9 5 7 8 sylancr R Er X x A R B R x A R A R x
10 4 9 mpbid R Er X x A R B R A R x
11 elinel2 x A R B R x B R
12 11 adantl R Er X x A R B R x B R
13 ecexr x B R B V
14 12 13 syl R Er X x A R B R B V
15 elecg x V B V x B R B R x
16 5 14 15 sylancr R Er X x A R B R x B R B R x
17 12 16 mpbid R Er X x A R B R B R x
18 2 10 17 ertr4d R Er X x A R B R A R B
19 2 18 erthi R Er X x A R B R A R = B R
20 19 ex R Er X x A R B R A R = B R
21 20 exlimdv R Er X x x A R B R A R = B R
22 1 21 syl5bi R Er X ¬ A R B R = A R = B R
23 22 orrd R Er X A R B R = A R = B R
24 23 orcomd R Er X A R = B R A R B R =