Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
erdm
Next ⟩
ercl
Metamath Proof Explorer
Ascii
Unicode
Theorem
erdm
Description:
The domain of an equivalence relation.
(Contributed by
Mario Carneiro
, 12-Aug-2015)
Ref
Expression
Assertion
erdm
⊢
R
Er
A
→
dom
⁡
R
=
A
Proof
Step
Hyp
Ref
Expression
1
df-er
⊢
R
Er
A
↔
Rel
⁡
R
∧
dom
⁡
R
=
A
∧
R
-1
∪
R
∘
R
⊆
R
2
1
simp2bi
⊢
R
Er
A
→
dom
⁡
R
=
A