Metamath Proof Explorer


Theorem erdm

Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erdm R Er A dom R = A

Proof

Step Hyp Ref Expression
1 df-er R Er A Rel R dom R = A R -1 R R R
2 1 simp2bi R Er A dom R = A