Metamath Proof Explorer


Theorem erdszelem3

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
Assertion erdszelem3 A1NKA=sup.y𝒫1A|FyIsom<,OyFyAy<

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
4 oveq2 x=A1x=1A
5 4 pweqd x=A𝒫1x=𝒫1A
6 eleq1 x=AxyAy
7 6 anbi2d x=AFyIsom<,OyFyxyFyIsom<,OyFyAy
8 5 7 rabeqbidv x=Ay𝒫1x|FyIsom<,OyFyxy=y𝒫1A|FyIsom<,OyFyAy
9 8 imaeq2d x=A.y𝒫1x|FyIsom<,OyFyxy=.y𝒫1A|FyIsom<,OyFyAy
10 9 supeq1d x=Asup.y𝒫1x|FyIsom<,OyFyxy<=sup.y𝒫1A|FyIsom<,OyFyAy<
11 ltso <Or
12 11 supex sup.y𝒫1A|FyIsom<,OyFyAy<V
13 10 3 12 fvmpt A1NKA=sup.y𝒫1A|FyIsom<,OyFyAy<