Metamath Proof Explorer


Theorem erdszelem4

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
erdszelem.o OOr
Assertion erdszelem4 φA1NAy𝒫1A|FyIsom<,OyFyAy

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.k K=x1Nsup.y𝒫1x|FyIsom<,OyFyxy<
4 erdszelem.o OOr
5 elfznn A1NA
6 5 adantl φA1NA
7 elfz1end AA1A
8 6 7 sylib φA1NA1A
9 8 snssd φA1NA1A
10 elsni xAx=A
11 elsni yAy=A
12 10 11 breqan12d xAyAx<yA<A
13 12 adantl φA1NxAyAx<yA<A
14 fzssuz 1N1
15 uzssz 1
16 zssre
17 15 16 sstri 1
18 14 17 sstri 1N
19 simpr φA1NA1N
20 19 adantr φA1NxAyAA1N
21 18 20 sselid φA1NxAyAA
22 21 ltnrd φA1NxAyA¬A<A
23 22 pm2.21d φA1NxAyAA<AFxOFy
24 13 23 sylbid φA1NxAyAx<yFxOFy
25 24 ralrimivva φA1NxAyAx<yFxOFy
26 f1f F:1N1-1F:1N
27 2 26 syl φF:1N
28 27 adantr φA1NF:1N
29 19 snssd φA1NA1N
30 ltso <Or
31 soss 1N<Or<Or1N
32 18 30 31 mp2 <Or1N
33 soisores <Or1NOOrF:1NA1NFAIsom<,OAFAxAyAx<yFxOFy
34 32 4 33 mpanl12 F:1NA1NFAIsom<,OAFAxAyAx<yFxOFy
35 28 29 34 syl2anc φA1NFAIsom<,OAFAxAyAx<yFxOFy
36 25 35 mpbird φA1NFAIsom<,OAFA
37 snidg A1NAA
38 37 adantl φA1NAA
39 eqid y𝒫1A|FyIsom<,OyFyAy=y𝒫1A|FyIsom<,OyFyAy
40 39 erdszelem1 Ay𝒫1A|FyIsom<,OyFyAyA1AFAIsom<,OAFAAA
41 9 36 38 40 syl3anbrc φA1NAy𝒫1A|FyIsom<,OyFyAy