Metamath Proof Explorer


Theorem ereq1

Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ereq1 R = S R Er A S Er A

Proof

Step Hyp Ref Expression
1 releq R = S Rel R Rel S
2 dmeq R = S dom R = dom S
3 2 eqeq1d R = S dom R = A dom S = A
4 cnveq R = S R -1 = S -1
5 coeq1 R = S R R = S R
6 coeq2 R = S S R = S S
7 5 6 eqtrd R = S R R = S S
8 4 7 uneq12d R = S R -1 R R = S -1 S S
9 8 sseq1d R = S R -1 R R R S -1 S S R
10 sseq2 R = S S -1 S S R S -1 S S S
11 9 10 bitrd R = S R -1 R R R S -1 S S S
12 1 3 11 3anbi123d R = S Rel R dom R = A R -1 R R R Rel S dom S = A S -1 S S S
13 df-er R Er A Rel R dom R = A R -1 R R R
14 df-er S Er A Rel S dom S = A S -1 S S S
15 12 13 14 3bitr4g R = S R Er A S Er A