Metamath Proof Explorer


Theorem ereq2

Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ereq2 A = B R Er A R Er B

Proof

Step Hyp Ref Expression
1 eqeq2 A = B dom R = A dom R = B
2 1 3anbi2d A = B Rel R dom R = A R -1 R R R Rel R dom R = B R -1 R R R
3 df-er R Er A Rel R dom R = A R -1 R R R
4 df-er R Er B Rel R dom R = B R -1 R R R
5 2 3 4 3bitr4g A = B R Er A R Er B