Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erssxp | ||
2 | sqxpexg | ||
3 | ssexg | ||
4 | 1 2 3 | syl2an | |
5 | 4 | ex |