Metamath Proof Explorer


Theorem erex

Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erex R Er A A V R V

Proof

Step Hyp Ref Expression
1 erssxp R Er A R A × A
2 sqxpexg A V A × A V
3 ssexg R A × A A × A V R V
4 1 2 3 syl2an R Er A A V R V
5 4 ex R Er A A V R V