Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erex |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erssxp | ||
| 2 | sqxpexg | ||
| 3 | ssexg | ||
| 4 | 1 2 3 | syl2an | |
| 5 | 4 | ex |