Metamath Proof Explorer


Theorem erexb

Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erexb R Er A R V A V

Proof

Step Hyp Ref Expression
1 dmexg R V dom R V
2 erdm R Er A dom R = A
3 2 eleq1d R Er A dom R V A V
4 1 3 syl5ib R Er A R V A V
5 erex R Er A A V R V
6 4 5 impbid R Er A R V A V