Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erexb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | ||
| 2 | erdm | ||
| 3 | 2 | eleq1d | |
| 4 | 1 3 | imbitrid | |
| 5 | erex | ||
| 6 | 4 5 | impbid |