Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erexb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg | ||
2 | erdm | ||
3 | 2 | eleq1d | |
4 | 1 3 | syl5ib | |
5 | erex | ||
6 | 4 5 | impbid |