Metamath Proof Explorer


Theorem erlbrd

Description: Deduce the ring localization equivalence relation. If for some T e. S we have T x. ( E x. H - F x. G ) = 0 , then pairs <. E , G >. and <. F , H >. are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b B = Base R
erlcl1.e No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
erlcl1.s φ S B
erldi.1 0 ˙ = 0 R
erldi.2 · ˙ = R
erldi.3 - ˙ = - R
erlbrd.u φ U = E G
erlbrd.v φ V = F H
erlbrd.e φ E B
erlbrd.f φ F B
erlbrd.g φ G S
erlbrd.h φ H S
erlbrd.1 φ T S
erlbrd.2 φ T · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
Assertion erlbrd φ U ˙ V

Proof

Step Hyp Ref Expression
1 erlcl1.b B = Base R
2 erlcl1.e Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
3 erlcl1.s φ S B
4 erldi.1 0 ˙ = 0 R
5 erldi.2 · ˙ = R
6 erldi.3 - ˙ = - R
7 erlbrd.u φ U = E G
8 erlbrd.v φ V = F H
9 erlbrd.e φ E B
10 erlbrd.f φ F B
11 erlbrd.g φ G S
12 erlbrd.h φ H S
13 erlbrd.1 φ T S
14 erlbrd.2 φ T · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
15 9 11 opelxpd φ E G B × S
16 7 15 eqeltrd φ U B × S
17 10 12 opelxpd φ F H B × S
18 8 17 eqeltrd φ V B × S
19 16 18 jca φ U B × S V B × S
20 simpr φ t = T t = T
21 20 oveq1d φ t = T t · ˙ E · ˙ H - ˙ F · ˙ G = T · ˙ E · ˙ H - ˙ F · ˙ G
22 21 eqeq1d φ t = T t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙ T · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
23 13 22 14 rspcedvd φ t S t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
24 19 23 jca φ U B × S V B × S t S t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
25 eqid B × S = B × S
26 eqid a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ = a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
27 1 4 5 6 25 26 3 erlval Could not format ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) : No typesetting found for |- ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) with typecode |-
28 2 27 eqtrid φ ˙ = a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
29 simprl φ a = U b = V a = U
30 29 fveq2d φ a = U b = V 1 st a = 1 st U
31 7 fveq2d φ 1 st U = 1 st E G
32 op1stg E B G S 1 st E G = E
33 9 11 32 syl2anc φ 1 st E G = E
34 31 33 eqtrd φ 1 st U = E
35 34 adantr φ a = U b = V 1 st U = E
36 30 35 eqtrd φ a = U b = V 1 st a = E
37 simprr φ a = U b = V b = V
38 37 fveq2d φ a = U b = V 2 nd b = 2 nd V
39 8 fveq2d φ 2 nd V = 2 nd F H
40 op2ndg F B H S 2 nd F H = H
41 10 12 40 syl2anc φ 2 nd F H = H
42 39 41 eqtrd φ 2 nd V = H
43 42 adantr φ a = U b = V 2 nd V = H
44 38 43 eqtrd φ a = U b = V 2 nd b = H
45 36 44 oveq12d φ a = U b = V 1 st a · ˙ 2 nd b = E · ˙ H
46 37 fveq2d φ a = U b = V 1 st b = 1 st V
47 8 fveq2d φ 1 st V = 1 st F H
48 op1stg F B H S 1 st F H = F
49 10 12 48 syl2anc φ 1 st F H = F
50 47 49 eqtrd φ 1 st V = F
51 50 adantr φ a = U b = V 1 st V = F
52 46 51 eqtrd φ a = U b = V 1 st b = F
53 29 fveq2d φ a = U b = V 2 nd a = 2 nd U
54 7 fveq2d φ 2 nd U = 2 nd E G
55 op2ndg E B G S 2 nd E G = G
56 9 11 55 syl2anc φ 2 nd E G = G
57 54 56 eqtrd φ 2 nd U = G
58 57 adantr φ a = U b = V 2 nd U = G
59 53 58 eqtrd φ a = U b = V 2 nd a = G
60 52 59 oveq12d φ a = U b = V 1 st b · ˙ 2 nd a = F · ˙ G
61 45 60 oveq12d φ a = U b = V 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = E · ˙ H - ˙ F · ˙ G
62 61 oveq2d φ a = U b = V t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = t · ˙ E · ˙ H - ˙ F · ˙ G
63 62 eqeq1d φ a = U b = V t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
64 63 rexbidv φ a = U b = V t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ t S t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
65 28 64 brab2d φ U ˙ V U B × S V B × S t S t · ˙ E · ˙ H - ˙ F · ˙ G = 0 ˙
66 24 65 mpbird φ U ˙ V