Metamath Proof Explorer


Theorem erlcl2

Description: Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b B = Base R
erlcl1.e No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
erlcl1.s φ S B
erlcl1.1 φ U ˙ V
Assertion erlcl2 φ V B × S

Proof

Step Hyp Ref Expression
1 erlcl1.b B = Base R
2 erlcl1.e Could not format .~ = ( R ~RL S ) : No typesetting found for |- .~ = ( R ~RL S ) with typecode |-
3 erlcl1.s φ S B
4 erlcl1.1 φ U ˙ V
5 eqid 0 R = 0 R
6 eqid R = R
7 eqid - R = - R
8 eqid B × S = B × S
9 eqid a b | a B × S b B × S t S t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R = a b | a B × S b B × S t S t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R
10 1 5 6 7 8 9 3 erlval Could not format ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t ( .r ` R ) ( ( ( 1st ` a ) ( .r ` R ) ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) ( .r ` R ) ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } ) : No typesetting found for |- ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t ( .r ` R ) ( ( ( 1st ` a ) ( .r ` R ) ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) ( .r ` R ) ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } ) with typecode |-
11 2 10 eqtrid φ ˙ = a b | a B × S b B × S t S t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R
12 simpl a = U b = V a = U
13 12 fveq2d a = U b = V 1 st a = 1 st U
14 simpr a = U b = V b = V
15 14 fveq2d a = U b = V 2 nd b = 2 nd V
16 13 15 oveq12d a = U b = V 1 st a R 2 nd b = 1 st U R 2 nd V
17 14 fveq2d a = U b = V 1 st b = 1 st V
18 12 fveq2d a = U b = V 2 nd a = 2 nd U
19 17 18 oveq12d a = U b = V 1 st b R 2 nd a = 1 st V R 2 nd U
20 16 19 oveq12d a = U b = V 1 st a R 2 nd b - R 1 st b R 2 nd a = 1 st U R 2 nd V - R 1 st V R 2 nd U
21 20 oveq2d a = U b = V t R 1 st a R 2 nd b - R 1 st b R 2 nd a = t R 1 st U R 2 nd V - R 1 st V R 2 nd U
22 21 eqeq1d a = U b = V t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R t R 1 st U R 2 nd V - R 1 st V R 2 nd U = 0 R
23 22 rexbidv a = U b = V t S t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R t S t R 1 st U R 2 nd V - R 1 st V R 2 nd U = 0 R
24 23 adantl φ a = U b = V t S t R 1 st a R 2 nd b - R 1 st b R 2 nd a = 0 R t S t R 1 st U R 2 nd V - R 1 st V R 2 nd U = 0 R
25 11 24 brab2d φ U ˙ V U B × S V B × S t S t R 1 st U R 2 nd V - R 1 st V R 2 nd U = 0 R
26 4 25 mpbid φ U B × S V B × S t S t R 1 st U R 2 nd V - R 1 st V R 2 nd U = 0 R
27 26 simplrd φ V B × S