Metamath Proof Explorer


Theorem erlecpbl

Description: Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ ˙ Er V
ercpbl.v φ V W
ercpbl.f F = x V x ˙
erlecpbl.e φ A ˙ C B ˙ D A N B C N D
Assertion erlecpbl φ A V B V C V D V F A = F C F B = F D A N B C N D

Proof

Step Hyp Ref Expression
1 ercpbl.r φ ˙ Er V
2 ercpbl.v φ V W
3 ercpbl.f F = x V x ˙
4 erlecpbl.e φ A ˙ C B ˙ D A N B C N D
5 1 3ad2ant1 φ A V B V C V D V ˙ Er V
6 2 3ad2ant1 φ A V B V C V D V V W
7 simp2l φ A V B V C V D V A V
8 5 6 3 7 ercpbllem φ A V B V C V D V F A = F C A ˙ C
9 simp2r φ A V B V C V D V B V
10 5 6 3 9 ercpbllem φ A V B V C V D V F B = F D B ˙ D
11 8 10 anbi12d φ A V B V C V D V F A = F C F B = F D A ˙ C B ˙ D
12 4 3ad2ant1 φ A V B V C V D V A ˙ C B ˙ D A N B C N D
13 11 12 sylbid φ A V B V C V D V F A = F C F B = F D A N B C N D