Metamath Proof Explorer


Theorem erng1lem

Description: Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013)

Ref Expression
Hypotheses erng1.h H = LHyp K
erng1.t T = LTrn K W
erng1.e E = TEndo K W
erng1.d D = EDRing K W
erng1.r K HL W H D Ring
Assertion erng1lem K HL W H 1 D = I T

Proof

Step Hyp Ref Expression
1 erng1.h H = LHyp K
2 erng1.t T = LTrn K W
3 erng1.e E = TEndo K W
4 erng1.d D = EDRing K W
5 erng1.r K HL W H D Ring
6 1 2 3 tendoidcl K HL W H I T E
7 eqid Base D = Base D
8 1 2 3 4 7 erngbase K HL W H Base D = E
9 6 8 eleqtrrd K HL W H I T Base D
10 8 eleq2d K HL W H u Base D u E
11 simpl K HL W H u E K HL W H
12 6 adantr K HL W H u E I T E
13 simpr K HL W H u E u E
14 eqid D = D
15 1 2 3 4 14 erngmul K HL W H I T E u E I T D u = I T u
16 11 12 13 15 syl12anc K HL W H u E I T D u = I T u
17 1 2 3 tendo1mul K HL W H u E I T u = u
18 16 17 eqtrd K HL W H u E I T D u = u
19 1 2 3 4 14 erngmul K HL W H u E I T E u D I T = u I T
20 11 13 12 19 syl12anc K HL W H u E u D I T = u I T
21 1 2 3 tendo1mulr K HL W H u E u I T = u
22 20 21 eqtrd K HL W H u E u D I T = u
23 18 22 jca K HL W H u E I T D u = u u D I T = u
24 23 ex K HL W H u E I T D u = u u D I T = u
25 10 24 sylbid K HL W H u Base D I T D u = u u D I T = u
26 25 ralrimiv K HL W H u Base D I T D u = u u D I T = u
27 eqid 1 D = 1 D
28 7 14 27 isringid D Ring I T Base D u Base D I T D u = u u D I T = u 1 D = I T
29 5 28 syl K HL W H I T Base D u Base D I T D u = u u D I T = u 1 D = I T
30 9 26 29 mpbi2and K HL W H 1 D = I T