Metamath Proof Explorer


Theorem eroprf

Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses eropr.1 J = A / R
eropr.2 K = B / S
eropr.3 φ T Z
eropr.4 φ R Er U
eropr.5 φ S Er V
eropr.6 φ T Er W
eropr.7 φ A U
eropr.8 φ B V
eropr.9 φ C W
eropr.10 φ + ˙ : A × B C
eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
eropr.12 ˙ = x y z | p A q B x = p R y = q S z = p + ˙ q T
eropr.13 φ R X
eropr.14 φ S Y
eropr.15 L = C / T
Assertion eroprf φ ˙ : J × K L

Proof

Step Hyp Ref Expression
1 eropr.1 J = A / R
2 eropr.2 K = B / S
3 eropr.3 φ T Z
4 eropr.4 φ R Er U
5 eropr.5 φ S Er V
6 eropr.6 φ T Er W
7 eropr.7 φ A U
8 eropr.8 φ B V
9 eropr.9 φ C W
10 eropr.10 φ + ˙ : A × B C
11 eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
12 eropr.12 ˙ = x y z | p A q B x = p R y = q S z = p + ˙ q T
13 eropr.13 φ R X
14 eropr.14 φ S Y
15 eropr.15 L = C / T
16 3 ad2antrr φ x J y K p A q B T Z
17 10 adantr φ x J y K + ˙ : A × B C
18 17 fovrnda φ x J y K p A q B p + ˙ q C
19 ecelqsg T Z p + ˙ q C p + ˙ q T C / T
20 16 18 19 syl2anc φ x J y K p A q B p + ˙ q T C / T
21 20 15 eleqtrrdi φ x J y K p A q B p + ˙ q T L
22 eleq1a p + ˙ q T L z = p + ˙ q T z L
23 21 22 syl φ x J y K p A q B z = p + ˙ q T z L
24 23 adantld φ x J y K p A q B x = p R y = q S z = p + ˙ q T z L
25 24 rexlimdvva φ x J y K p A q B x = p R y = q S z = p + ˙ q T z L
26 25 abssdv φ x J y K z | p A q B x = p R y = q S z = p + ˙ q T L
27 1 2 3 4 5 6 7 8 9 10 11 eroveu φ x J y K ∃! z p A q B x = p R y = q S z = p + ˙ q T
28 iotacl ∃! z p A q B x = p R y = q S z = p + ˙ q T ι z | p A q B x = p R y = q S z = p + ˙ q T z | p A q B x = p R y = q S z = p + ˙ q T
29 27 28 syl φ x J y K ι z | p A q B x = p R y = q S z = p + ˙ q T z | p A q B x = p R y = q S z = p + ˙ q T
30 26 29 sseldd φ x J y K ι z | p A q B x = p R y = q S z = p + ˙ q T L
31 30 ralrimivva φ x J y K ι z | p A q B x = p R y = q S z = p + ˙ q T L
32 eqid x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T = x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T
33 32 fmpo x J y K ι z | p A q B x = p R y = q S z = p + ˙ q T L x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T : J × K L
34 31 33 sylib φ x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T : J × K L
35 1 2 3 4 5 6 7 8 9 10 11 12 erovlem φ ˙ = x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T
36 35 feq1d φ ˙ : J × K L x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T : J × K L
37 34 36 mpbird φ ˙ : J × K L