Metamath Proof Explorer


Theorem eroprf2

Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses eropr2.1 J = A / ˙
eropr2.2 ˙ = x y z | p A q A x = p ˙ y = q ˙ z = p + ˙ q ˙
eropr2.3 φ ˙ X
eropr2.4 φ ˙ Er U
eropr2.5 φ A U
eropr2.6 φ + ˙ : A × A A
eropr2.7 φ r A s A t A u A r ˙ s t ˙ u r + ˙ t ˙ s + ˙ u
Assertion eroprf2 φ ˙ : J × J J

Proof

Step Hyp Ref Expression
1 eropr2.1 J = A / ˙
2 eropr2.2 ˙ = x y z | p A q A x = p ˙ y = q ˙ z = p + ˙ q ˙
3 eropr2.3 φ ˙ X
4 eropr2.4 φ ˙ Er U
5 eropr2.5 φ A U
6 eropr2.6 φ + ˙ : A × A A
7 eropr2.7 φ r A s A t A u A r ˙ s t ˙ u r + ˙ t ˙ s + ˙ u
8 1 1 3 4 4 4 5 5 5 6 7 2 3 3 1 eroprf φ ˙ : J × J J