Metamath Proof Explorer


Theorem erov

Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses eropr.1 J = A / R
eropr.2 K = B / S
eropr.3 φ T Z
eropr.4 φ R Er U
eropr.5 φ S Er V
eropr.6 φ T Er W
eropr.7 φ A U
eropr.8 φ B V
eropr.9 φ C W
eropr.10 φ + ˙ : A × B C
eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
eropr.12 ˙ = x y z | p A q B x = p R y = q S z = p + ˙ q T
eropr.13 φ R X
eropr.14 φ S Y
Assertion erov φ P A Q B P R ˙ Q S = P + ˙ Q T

Proof

Step Hyp Ref Expression
1 eropr.1 J = A / R
2 eropr.2 K = B / S
3 eropr.3 φ T Z
4 eropr.4 φ R Er U
5 eropr.5 φ S Er V
6 eropr.6 φ T Er W
7 eropr.7 φ A U
8 eropr.8 φ B V
9 eropr.9 φ C W
10 eropr.10 φ + ˙ : A × B C
11 eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
12 eropr.12 ˙ = x y z | p A q B x = p R y = q S z = p + ˙ q T
13 eropr.13 φ R X
14 eropr.14 φ S Y
15 1 2 3 4 5 6 7 8 9 10 11 12 erovlem φ ˙ = x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T
16 15 3ad2ant1 φ P A Q B ˙ = x J , y K ι z | p A q B x = p R y = q S z = p + ˙ q T
17 simprl φ P A Q B x = P R y = Q S x = P R
18 17 eqeq1d φ P A Q B x = P R y = Q S x = p R P R = p R
19 simprr φ P A Q B x = P R y = Q S y = Q S
20 19 eqeq1d φ P A Q B x = P R y = Q S y = q S Q S = q S
21 18 20 anbi12d φ P A Q B x = P R y = Q S x = p R y = q S P R = p R Q S = q S
22 21 anbi1d φ P A Q B x = P R y = Q S x = p R y = q S z = p + ˙ q T P R = p R Q S = q S z = p + ˙ q T
23 22 2rexbidv φ P A Q B x = P R y = Q S p A q B x = p R y = q S z = p + ˙ q T p A q B P R = p R Q S = q S z = p + ˙ q T
24 23 iotabidv φ P A Q B x = P R y = Q S ι z | p A q B x = p R y = q S z = p + ˙ q T = ι z | p A q B P R = p R Q S = q S z = p + ˙ q T
25 ecelqsg R X P A P R A / R
26 25 1 eleqtrrdi R X P A P R J
27 13 26 sylan φ P A P R J
28 27 3adant3 φ P A Q B P R J
29 ecelqsg S Y Q B Q S B / S
30 29 2 eleqtrrdi S Y Q B Q S K
31 14 30 sylan φ Q B Q S K
32 31 3adant2 φ P A Q B Q S K
33 iotaex ι z | p A q B P R = p R Q S = q S z = p + ˙ q T V
34 33 a1i φ P A Q B ι z | p A q B P R = p R Q S = q S z = p + ˙ q T V
35 16 24 28 32 34 ovmpod φ P A Q B P R ˙ Q S = ι z | p A q B P R = p R Q S = q S z = p + ˙ q T
36 eqid P R = P R
37 eqid Q S = Q S
38 36 37 pm3.2i P R = P R Q S = Q S
39 eqid P + ˙ Q T = P + ˙ Q T
40 38 39 pm3.2i P R = P R Q S = Q S P + ˙ Q T = P + ˙ Q T
41 eceq1 p = P p R = P R
42 41 eqeq2d p = P P R = p R P R = P R
43 42 anbi1d p = P P R = p R Q S = q S P R = P R Q S = q S
44 oveq1 p = P p + ˙ q = P + ˙ q
45 44 eceq1d p = P p + ˙ q T = P + ˙ q T
46 45 eqeq2d p = P P + ˙ Q T = p + ˙ q T P + ˙ Q T = P + ˙ q T
47 43 46 anbi12d p = P P R = p R Q S = q S P + ˙ Q T = p + ˙ q T P R = P R Q S = q S P + ˙ Q T = P + ˙ q T
48 eceq1 q = Q q S = Q S
49 48 eqeq2d q = Q Q S = q S Q S = Q S
50 49 anbi2d q = Q P R = P R Q S = q S P R = P R Q S = Q S
51 oveq2 q = Q P + ˙ q = P + ˙ Q
52 51 eceq1d q = Q P + ˙ q T = P + ˙ Q T
53 52 eqeq2d q = Q P + ˙ Q T = P + ˙ q T P + ˙ Q T = P + ˙ Q T
54 50 53 anbi12d q = Q P R = P R Q S = q S P + ˙ Q T = P + ˙ q T P R = P R Q S = Q S P + ˙ Q T = P + ˙ Q T
55 47 54 rspc2ev P A Q B P R = P R Q S = Q S P + ˙ Q T = P + ˙ Q T p A q B P R = p R Q S = q S P + ˙ Q T = p + ˙ q T
56 40 55 mp3an3 P A Q B p A q B P R = p R Q S = q S P + ˙ Q T = p + ˙ q T
57 56 3adant1 φ P A Q B p A q B P R = p R Q S = q S P + ˙ Q T = p + ˙ q T
58 ecexg T Z P + ˙ Q T V
59 3 58 syl φ P + ˙ Q T V
60 59 3ad2ant1 φ P A Q B P + ˙ Q T V
61 simp1 φ P A Q B φ
62 1 2 3 4 5 6 7 8 9 10 11 eroveu φ P R J Q S K ∃! z p A q B P R = p R Q S = q S z = p + ˙ q T
63 61 28 32 62 syl12anc φ P A Q B ∃! z p A q B P R = p R Q S = q S z = p + ˙ q T
64 simpr φ P A Q B z = P + ˙ Q T z = P + ˙ Q T
65 64 eqeq1d φ P A Q B z = P + ˙ Q T z = p + ˙ q T P + ˙ Q T = p + ˙ q T
66 65 anbi2d φ P A Q B z = P + ˙ Q T P R = p R Q S = q S z = p + ˙ q T P R = p R Q S = q S P + ˙ Q T = p + ˙ q T
67 66 2rexbidv φ P A Q B z = P + ˙ Q T p A q B P R = p R Q S = q S z = p + ˙ q T p A q B P R = p R Q S = q S P + ˙ Q T = p + ˙ q T
68 60 63 67 iota2d φ P A Q B p A q B P R = p R Q S = q S P + ˙ Q T = p + ˙ q T ι z | p A q B P R = p R Q S = q S z = p + ˙ q T = P + ˙ Q T
69 57 68 mpbid φ P A Q B ι z | p A q B P R = p R Q S = q S z = p + ˙ q T = P + ˙ Q T
70 35 69 eqtrd φ P A Q B P R ˙ Q S = P + ˙ Q T