Metamath Proof Explorer


Theorem eroveu

Description: Lemma for erov and eroprf . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses eropr.1 J = A / R
eropr.2 K = B / S
eropr.3 φ T Z
eropr.4 φ R Er U
eropr.5 φ S Er V
eropr.6 φ T Er W
eropr.7 φ A U
eropr.8 φ B V
eropr.9 φ C W
eropr.10 φ + ˙ : A × B C
eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
Assertion eroveu φ X J Y K ∃! z p A q B X = p R Y = q S z = p + ˙ q T

Proof

Step Hyp Ref Expression
1 eropr.1 J = A / R
2 eropr.2 K = B / S
3 eropr.3 φ T Z
4 eropr.4 φ R Er U
5 eropr.5 φ S Er V
6 eropr.6 φ T Er W
7 eropr.7 φ A U
8 eropr.8 φ B V
9 eropr.9 φ C W
10 eropr.10 φ + ˙ : A × B C
11 eropr.11 φ r A s A t B u B r R s t S u r + ˙ t T s + ˙ u
12 elqsi X A / R p A X = p R
13 12 1 eleq2s X J p A X = p R
14 elqsi Y B / S q B Y = q S
15 14 2 eleq2s Y K q B Y = q S
16 13 15 anim12i X J Y K p A X = p R q B Y = q S
17 16 adantl φ X J Y K p A X = p R q B Y = q S
18 reeanv p A q B X = p R Y = q S p A X = p R q B Y = q S
19 17 18 sylibr φ X J Y K p A q B X = p R Y = q S
20 3 adantr φ X J Y K T Z
21 ecexg T Z p + ˙ q T V
22 elisset p + ˙ q T V z z = p + ˙ q T
23 20 21 22 3syl φ X J Y K z z = p + ˙ q T
24 23 biantrud φ X J Y K X = p R Y = q S X = p R Y = q S z z = p + ˙ q T
25 24 2rexbidv φ X J Y K p A q B X = p R Y = q S p A q B X = p R Y = q S z z = p + ˙ q T
26 19 25 mpbid φ X J Y K p A q B X = p R Y = q S z z = p + ˙ q T
27 19.42v z X = p R Y = q S z = p + ˙ q T X = p R Y = q S z z = p + ˙ q T
28 27 bicomi X = p R Y = q S z z = p + ˙ q T z X = p R Y = q S z = p + ˙ q T
29 28 rexbii q B X = p R Y = q S z z = p + ˙ q T q B z X = p R Y = q S z = p + ˙ q T
30 rexcom4 q B z X = p R Y = q S z = p + ˙ q T z q B X = p R Y = q S z = p + ˙ q T
31 29 30 bitri q B X = p R Y = q S z z = p + ˙ q T z q B X = p R Y = q S z = p + ˙ q T
32 31 rexbii p A q B X = p R Y = q S z z = p + ˙ q T p A z q B X = p R Y = q S z = p + ˙ q T
33 rexcom4 p A z q B X = p R Y = q S z = p + ˙ q T z p A q B X = p R Y = q S z = p + ˙ q T
34 32 33 bitri p A q B X = p R Y = q S z z = p + ˙ q T z p A q B X = p R Y = q S z = p + ˙ q T
35 26 34 sylib φ X J Y K z p A q B X = p R Y = q S z = p + ˙ q T
36 reeanv r A s A t B X = r R Y = t S z = r + ˙ t T u B X = s R Y = u S w = s + ˙ u T r A t B X = r R Y = t S z = r + ˙ t T s A u B X = s R Y = u S w = s + ˙ u T
37 eceq1 p = r p R = r R
38 37 eqeq2d p = r X = p R X = r R
39 38 anbi1d p = r X = p R Y = q S X = r R Y = q S
40 oveq1 p = r p + ˙ q = r + ˙ q
41 40 eceq1d p = r p + ˙ q T = r + ˙ q T
42 41 eqeq2d p = r z = p + ˙ q T z = r + ˙ q T
43 39 42 anbi12d p = r X = p R Y = q S z = p + ˙ q T X = r R Y = q S z = r + ˙ q T
44 eceq1 q = t q S = t S
45 44 eqeq2d q = t Y = q S Y = t S
46 45 anbi2d q = t X = r R Y = q S X = r R Y = t S
47 oveq2 q = t r + ˙ q = r + ˙ t
48 47 eceq1d q = t r + ˙ q T = r + ˙ t T
49 48 eqeq2d q = t z = r + ˙ q T z = r + ˙ t T
50 46 49 anbi12d q = t X = r R Y = q S z = r + ˙ q T X = r R Y = t S z = r + ˙ t T
51 43 50 cbvrex2vw p A q B X = p R Y = q S z = p + ˙ q T r A t B X = r R Y = t S z = r + ˙ t T
52 eceq1 p = s p R = s R
53 52 eqeq2d p = s X = p R X = s R
54 53 anbi1d p = s X = p R Y = q S X = s R Y = q S
55 oveq1 p = s p + ˙ q = s + ˙ q
56 55 eceq1d p = s p + ˙ q T = s + ˙ q T
57 56 eqeq2d p = s w = p + ˙ q T w = s + ˙ q T
58 54 57 anbi12d p = s X = p R Y = q S w = p + ˙ q T X = s R Y = q S w = s + ˙ q T
59 eceq1 q = u q S = u S
60 59 eqeq2d q = u Y = q S Y = u S
61 60 anbi2d q = u X = s R Y = q S X = s R Y = u S
62 oveq2 q = u s + ˙ q = s + ˙ u
63 62 eceq1d q = u s + ˙ q T = s + ˙ u T
64 63 eqeq2d q = u w = s + ˙ q T w = s + ˙ u T
65 61 64 anbi12d q = u X = s R Y = q S w = s + ˙ q T X = s R Y = u S w = s + ˙ u T
66 58 65 cbvrex2vw p A q B X = p R Y = q S w = p + ˙ q T s A u B X = s R Y = u S w = s + ˙ u T
67 51 66 anbi12i p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T r A t B X = r R Y = t S z = r + ˙ t T s A u B X = s R Y = u S w = s + ˙ u T
68 36 67 bitr4i r A s A t B X = r R Y = t S z = r + ˙ t T u B X = s R Y = u S w = s + ˙ u T p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T
69 reeanv t B u B X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T t B X = r R Y = t S z = r + ˙ t T u B X = s R Y = u S w = s + ˙ u T
70 4 adantr φ r A s A t B u B R Er U
71 7 adantr φ r A s A t B u B A U
72 simprll φ r A s A t B u B r A
73 71 72 sseldd φ r A s A t B u B r U
74 70 73 erth φ r A s A t B u B r R s r R = s R
75 5 adantr φ r A s A t B u B S Er V
76 8 adantr φ r A s A t B u B B V
77 simprrl φ r A s A t B u B t B
78 76 77 sseldd φ r A s A t B u B t V
79 75 78 erth φ r A s A t B u B t S u t S = u S
80 74 79 anbi12d φ r A s A t B u B r R s t S u r R = s R t S = u S
81 6 adantr φ r A s A t B u B T Er W
82 9 adantr φ r A s A t B u B C W
83 10 adantr φ r A s A t B u B + ˙ : A × B C
84 83 72 77 fovrnd φ r A s A t B u B r + ˙ t C
85 82 84 sseldd φ r A s A t B u B r + ˙ t W
86 81 85 erth φ r A s A t B u B r + ˙ t T s + ˙ u r + ˙ t T = s + ˙ u T
87 11 80 86 3imtr3d φ r A s A t B u B r R = s R t S = u S r + ˙ t T = s + ˙ u T
88 eqeq2 w = s + ˙ u T r + ˙ t T = w r + ˙ t T = s + ˙ u T
89 88 biimprcd r + ˙ t T = s + ˙ u T w = s + ˙ u T r + ˙ t T = w
90 87 89 syl6 φ r A s A t B u B r R = s R t S = u S w = s + ˙ u T r + ˙ t T = w
91 90 impd φ r A s A t B u B r R = s R t S = u S w = s + ˙ u T r + ˙ t T = w
92 eqeq1 X = r R X = s R r R = s R
93 eqeq1 Y = t S Y = u S t S = u S
94 92 93 bi2anan9 X = r R Y = t S X = s R Y = u S r R = s R t S = u S
95 94 anbi1d X = r R Y = t S X = s R Y = u S w = s + ˙ u T r R = s R t S = u S w = s + ˙ u T
96 95 adantr X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T r R = s R t S = u S w = s + ˙ u T
97 eqeq1 z = r + ˙ t T z = w r + ˙ t T = w
98 97 adantl X = r R Y = t S z = r + ˙ t T z = w r + ˙ t T = w
99 96 98 imbi12d X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T z = w r R = s R t S = u S w = s + ˙ u T r + ˙ t T = w
100 91 99 syl5ibrcom φ r A s A t B u B X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T z = w
101 100 impd φ r A s A t B u B X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T z = w
102 101 anassrs φ r A s A t B u B X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T z = w
103 102 rexlimdvva φ r A s A t B u B X = r R Y = t S z = r + ˙ t T X = s R Y = u S w = s + ˙ u T z = w
104 69 103 syl5bir φ r A s A t B X = r R Y = t S z = r + ˙ t T u B X = s R Y = u S w = s + ˙ u T z = w
105 104 rexlimdvva φ r A s A t B X = r R Y = t S z = r + ˙ t T u B X = s R Y = u S w = s + ˙ u T z = w
106 68 105 syl5bir φ p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T z = w
107 106 adantr φ X J Y K p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T z = w
108 107 alrimivv φ X J Y K z w p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T z = w
109 eqeq1 z = w z = p + ˙ q T w = p + ˙ q T
110 109 anbi2d z = w X = p R Y = q S z = p + ˙ q T X = p R Y = q S w = p + ˙ q T
111 110 2rexbidv z = w p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T
112 111 eu4 ∃! z p A q B X = p R Y = q S z = p + ˙ q T z p A q B X = p R Y = q S z = p + ˙ q T z w p A q B X = p R Y = q S z = p + ˙ q T p A q B X = p R Y = q S w = p + ˙ q T z = w
113 35 108 112 sylanbrc φ X J Y K ∃! z p A q B X = p R Y = q S z = p + ˙ q T