Metamath Proof Explorer


Theorem erref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersymb.1 φ R Er X
erref.2 φ A X
Assertion erref φ A R A

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 erref.2 φ A X
3 erdm R Er X dom R = X
4 1 3 syl φ dom R = X
5 2 4 eleqtrrd φ A dom R
6 eldmg A X A dom R x A R x
7 2 6 syl φ A dom R x A R x
8 5 7 mpbid φ x A R x
9 1 adantr φ A R x R Er X
10 simpr φ A R x A R x
11 9 10 10 ertr4d φ A R x A R A
12 8 11 exlimddv φ A R A