Metamath Proof Explorer


Theorem errel

Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion errel R Er A Rel R

Proof

Step Hyp Ref Expression
1 df-er R Er A Rel R dom R = A R -1 R R R
2 1 simp1bi R Er A Rel R