Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
errel
Next ⟩
erdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
errel
Description:
An equivalence relation is a relation.
(Contributed by
Mario Carneiro
, 12-Aug-2015)
Ref
Expression
Assertion
errel
⊢
R
Er
A
→
Rel
⁡
R
Proof
Step
Hyp
Ref
Expression
1
df-er
⊢
R
Er
A
↔
Rel
⁡
R
∧
dom
⁡
R
=
A
∧
R
-1
∪
R
∘
R
⊆
R
2
1
simp1bi
⊢
R
Er
A
→
Rel
⁡
R