Metamath Proof Explorer


Theorem errn

Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion errn R Er A ran R = A

Proof

Step Hyp Ref Expression
1 df-rn ran R = dom R -1
2 ercnv R Er A R -1 = R
3 2 dmeqd R Er A dom R -1 = dom R
4 erdm R Er A dom R = A
5 3 4 eqtrd R Er A dom R -1 = A
6 1 5 eqtrid R Er A ran R = A