Metamath Proof Explorer


Theorem erssxp

Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erssxp R Er A R A × A

Proof

Step Hyp Ref Expression
1 errel R Er A Rel R
2 relssdmrn Rel R R dom R × ran R
3 1 2 syl R Er A R dom R × ran R
4 erdm R Er A dom R = A
5 errn R Er A ran R = A
6 4 5 xpeq12d R Er A dom R × ran R = A × A
7 3 6 sseqtrd R Er A R A × A