Metamath Proof Explorer


Theorem ersymb

Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis ersymb.1 φ R Er X
Assertion ersymb φ A R B B R A

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 1 adantr φ A R B R Er X
3 simpr φ A R B A R B
4 2 3 ersym φ A R B B R A
5 1 adantr φ B R A R Er X
6 simpr φ B R A B R A
7 5 6 ersym φ B R A A R B
8 4 7 impbida φ A R B B R A