Step |
Hyp |
Ref |
Expression |
1 |
|
erth.1 |
|
2 |
|
erth.2 |
|
3 |
1
|
ersymb |
|
4 |
3
|
biimpa |
|
5 |
1
|
ertr |
|
6 |
5
|
impl |
|
7 |
4 6
|
syldanl |
|
8 |
1
|
ertr |
|
9 |
8
|
impl |
|
10 |
7 9
|
impbida |
|
11 |
|
vex |
|
12 |
2
|
adantr |
|
13 |
|
elecg |
|
14 |
11 12 13
|
sylancr |
|
15 |
|
errel |
|
16 |
1 15
|
syl |
|
17 |
|
brrelex2 |
|
18 |
16 17
|
sylan |
|
19 |
|
elecg |
|
20 |
11 18 19
|
sylancr |
|
21 |
10 14 20
|
3bitr4d |
|
22 |
21
|
eqrdv |
|
23 |
1
|
adantr |
|
24 |
1 2
|
erref |
|
25 |
24
|
adantr |
|
26 |
2
|
adantr |
|
27 |
|
elecg |
|
28 |
26 26 27
|
syl2anc |
|
29 |
25 28
|
mpbird |
|
30 |
|
simpr |
|
31 |
29 30
|
eleqtrd |
|
32 |
23 30
|
ereldm |
|
33 |
26 32
|
mpbid |
|
34 |
|
elecg |
|
35 |
26 33 34
|
syl2anc |
|
36 |
31 35
|
mpbid |
|
37 |
23 36
|
ersym |
|
38 |
22 37
|
impbida |
|