Metamath Proof Explorer


Theorem erth

Description: Basic property of equivalence relations. Theorem 73 of Suppes p. 82. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses erth.1 φ R Er X
erth.2 φ A X
Assertion erth φ A R B A R = B R

Proof

Step Hyp Ref Expression
1 erth.1 φ R Er X
2 erth.2 φ A X
3 1 ersymb φ A R B B R A
4 3 biimpa φ A R B B R A
5 1 ertr φ B R A A R x B R x
6 5 impl φ B R A A R x B R x
7 4 6 syldanl φ A R B A R x B R x
8 1 ertr φ A R B B R x A R x
9 8 impl φ A R B B R x A R x
10 7 9 impbida φ A R B A R x B R x
11 vex x V
12 2 adantr φ A R B A X
13 elecg x V A X x A R A R x
14 11 12 13 sylancr φ A R B x A R A R x
15 errel R Er X Rel R
16 1 15 syl φ Rel R
17 brrelex2 Rel R A R B B V
18 16 17 sylan φ A R B B V
19 elecg x V B V x B R B R x
20 11 18 19 sylancr φ A R B x B R B R x
21 10 14 20 3bitr4d φ A R B x A R x B R
22 21 eqrdv φ A R B A R = B R
23 1 adantr φ A R = B R R Er X
24 1 2 erref φ A R A
25 24 adantr φ A R = B R A R A
26 2 adantr φ A R = B R A X
27 elecg A X A X A A R A R A
28 26 26 27 syl2anc φ A R = B R A A R A R A
29 25 28 mpbird φ A R = B R A A R
30 simpr φ A R = B R A R = B R
31 29 30 eleqtrd φ A R = B R A B R
32 23 30 ereldm φ A R = B R A X B X
33 26 32 mpbid φ A R = B R B X
34 elecg A X B X A B R B R A
35 26 33 34 syl2anc φ A R = B R A B R B R A
36 31 35 mpbid φ A R = B R B R A
37 23 36 ersym φ A R = B R A R B
38 22 37 impbida φ A R B A R = B R