Metamath Proof Explorer


Theorem erthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses erthi.1 φ R Er X
erthi.2 φ A R B
Assertion erthi φ A R = B R

Proof

Step Hyp Ref Expression
1 erthi.1 φ R Er X
2 erthi.2 φ A R B
3 1 2 ercl φ A X
4 1 3 erth φ A R B A R = B R
5 2 4 mpbid φ A R = B R