Metamath Proof Explorer


Theorem ertr2d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φ R Er X
ertrd.5 φ A R B
ertrd.6 φ B R C
Assertion ertr2d φ C R A

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 ertrd.5 φ A R B
3 ertrd.6 φ B R C
4 1 2 3 ertrd φ A R C
5 1 4 ersym φ C R A