Metamath Proof Explorer
Description: A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ersymb.1 |
|
|
|
ertrd.5 |
|
|
|
ertrd.6 |
|
|
Assertion |
ertr2d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ersymb.1 |
|
| 2 |
|
ertrd.5 |
|
| 3 |
|
ertrd.6 |
|
| 4 |
1 2 3
|
ertrd |
|
| 5 |
1 4
|
ersym |
|