Metamath Proof Explorer


Theorem ertr3d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φ R Er X
ertr3d.5 φ B R A
ertr3d.6 φ B R C
Assertion ertr3d φ A R C

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 ertr3d.5 φ B R A
3 ertr3d.6 φ B R C
4 1 2 ersym φ A R B
5 1 4 3 ertrd φ A R C