Metamath Proof Explorer


Theorem ertr4d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φ R Er X
ertr4d.5 φ A R B
ertr4d.6 φ C R B
Assertion ertr4d φ A R C

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 ertr4d.5 φ A R B
3 ertr4d.6 φ C R B
4 1 3 ersym φ B R C
5 1 2 4 ertrd φ A R C