Metamath Proof Explorer


Theorem ertrd

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φ R Er X
ertrd.5 φ A R B
ertrd.6 φ B R C
Assertion ertrd φ A R C

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 ertrd.5 φ A R B
3 ertrd.6 φ B R C
4 1 ertr φ A R B B R C A R C
5 2 3 4 mp2and φ A R C