Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|
2 |
|
nn0abscl |
|
3 |
2
|
nn0red |
|
4 |
3
|
adantr |
|
5 |
|
nnabscl |
|
6 |
5
|
nnge1d |
|
7 |
1 4 6
|
lensymd |
|
8 |
|
nan |
|
9 |
7 8
|
mpbir |
|
10 |
9
|
nrex |
|
11 |
|
ere |
|
12 |
11
|
recni |
|
13 |
|
neldif |
|
14 |
12 13
|
mpan |
|
15 |
|
ene0 |
|
16 |
|
elsng |
|
17 |
12 16
|
ax-mp |
|
18 |
15 17
|
nemtbir |
|
19 |
18
|
a1i |
|
20 |
14 19
|
eldifd |
|
21 |
|
elaa2 |
|
22 |
20 21
|
sylib |
|
23 |
22
|
simprd |
|
24 |
|
simpl |
|
25 |
|
0nn0 |
|
26 |
|
n0p |
|
27 |
25 26
|
mp3an2 |
|
28 |
|
nelsn |
|
29 |
27 28
|
syl |
|
30 |
24 29
|
eldifd |
|
31 |
30
|
adantrr |
|
32 |
|
simprr |
|
33 |
|
eqid |
|
34 |
|
simprl |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
|
fveq2 |
|
39 |
|
oveq2 |
|
40 |
38 39
|
oveq12d |
|
41 |
40
|
fveq2d |
|
42 |
41
|
oveq1d |
|
43 |
42
|
cbvsumv |
|
44 |
43
|
a1i |
|
45 |
|
oveq2 |
|
46 |
|
fveq2 |
|
47 |
45 46
|
oveq12d |
|
48 |
44 47
|
oveq12d |
|
49 |
48
|
cbvmptv |
|
50 |
49
|
a1i |
|
51 |
|
id |
|
52 |
50 51
|
fveq12d |
|
53 |
52
|
fveq2d |
|
54 |
53
|
breq1d |
|
55 |
54
|
cbvralvw |
|
56 |
|
fveq2 |
|
57 |
56
|
raleqdv |
|
58 |
55 57
|
syl5bb |
|
59 |
58
|
cbvrabv |
|
60 |
59
|
infeq1i |
|
61 |
|
eqid |
|
62 |
31 32 33 34 35 36 37 60 61
|
etransclem48 |
|
63 |
62
|
rexlimiva |
|
64 |
23 63
|
syl |
|
65 |
10 64
|
mt3 |
|