Metamath Proof Explorer


Theorem etransc

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Assertion etransc e 𝔸

Proof

Step Hyp Ref Expression
1 1red k k 0 1
2 nn0abscl k k 0
3 2 nn0red k k
4 3 adantr k k 0 k
5 nnabscl k k 0 k
6 5 nnge1d k k 0 1 k
7 1 4 6 lensymd k k 0 ¬ k < 1
8 nan k ¬ k 0 k < 1 k k 0 ¬ k < 1
9 7 8 mpbir k ¬ k 0 k < 1
10 9 nrex ¬ k k 0 k < 1
11 ere e
12 11 recni e
13 neldif e ¬ e 𝔸 e 𝔸
14 12 13 mpan ¬ e 𝔸 e 𝔸
15 ene0 e 0
16 elsng e e 0 e = 0
17 12 16 ax-mp e 0 e = 0
18 15 17 nemtbir ¬ e 0
19 18 a1i ¬ e 𝔸 ¬ e 0
20 14 19 eldifd ¬ e 𝔸 e 𝔸 0
21 elaa2 e 𝔸 0 e q Poly coeff q 0 0 q e = 0
22 20 21 sylib ¬ e 𝔸 e q Poly coeff q 0 0 q e = 0
23 22 simprd ¬ e 𝔸 q Poly coeff q 0 0 q e = 0
24 simpl q Poly coeff q 0 0 q Poly
25 0nn0 0 0
26 n0p q Poly 0 0 coeff q 0 0 q 0 𝑝
27 25 26 mp3an2 q Poly coeff q 0 0 q 0 𝑝
28 nelsn q 0 𝑝 ¬ q 0 𝑝
29 27 28 syl q Poly coeff q 0 0 ¬ q 0 𝑝
30 24 29 eldifd q Poly coeff q 0 0 q Poly 0 𝑝
31 30 adantrr q Poly coeff q 0 0 q e = 0 q Poly 0 𝑝
32 simprr q Poly coeff q 0 0 q e = 0 q e = 0
33 eqid coeff q = coeff q
34 simprl q Poly coeff q 0 0 q e = 0 coeff q 0 0
35 eqid deg q = deg q
36 eqid l = 0 deg q coeff q l e l deg q deg q deg q + 1 = l = 0 deg q coeff q l e l deg q deg q deg q + 1
37 eqid n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! = n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n !
38 fveq2 h = l coeff q h = coeff q l
39 oveq2 h = l e h = e l
40 38 39 oveq12d h = l coeff q h e h = coeff q l e l
41 40 fveq2d h = l coeff q h e h = coeff q l e l
42 41 oveq1d h = l coeff q h e h deg q deg q deg q + 1 = coeff q l e l deg q deg q deg q + 1
43 42 cbvsumv h = 0 deg q coeff q h e h deg q deg q deg q + 1 = l = 0 deg q coeff q l e l deg q deg q deg q + 1
44 43 a1i m = n h = 0 deg q coeff q h e h deg q deg q deg q + 1 = l = 0 deg q coeff q l e l deg q deg q deg q + 1
45 oveq2 m = n deg q deg q + 1 m = deg q deg q + 1 n
46 fveq2 m = n m ! = n !
47 45 46 oveq12d m = n deg q deg q + 1 m m ! = deg q deg q + 1 n n !
48 44 47 oveq12d m = n h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! = l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n !
49 48 cbvmptv m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! = n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n !
50 49 a1i m = n m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! = n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n !
51 id m = n m = n
52 50 51 fveq12d m = n m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m = n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n
53 52 fveq2d m = n m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m = n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n
54 53 breq1d m = n m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1
55 54 cbvralvw m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 n j n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1
56 fveq2 j = i j = i
57 56 raleqdv j = i n j n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1 n i n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1
58 55 57 syl5bb j = i m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 n i n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1
59 58 cbvrabv j 0 | m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 = i 0 | n i n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1
60 59 infeq1i sup j 0 | m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 < = sup i 0 | n i n 0 l = 0 deg q coeff q l e l deg q deg q deg q + 1 deg q deg q + 1 n n ! n < 1 <
61 eqid sup coeff q 0 deg q ! sup j 0 | m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 < * < = sup coeff q 0 deg q ! sup j 0 | m j m 0 h = 0 deg q coeff q h e h deg q deg q deg q + 1 deg q deg q + 1 m m ! m < 1 < * <
62 31 32 33 34 35 36 37 60 61 etransclem48 q Poly coeff q 0 0 q e = 0 k k 0 k < 1
63 62 rexlimiva q Poly coeff q 0 0 q e = 0 k k 0 k < 1
64 23 63 syl ¬ e 𝔸 k k 0 k < 1
65 10 64 mt3 e 𝔸