Metamath Proof Explorer


Theorem etransclem10

Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem10.n φ P
etransclem10.m φ M 0
etransclem10.c φ C : 0 M 0 N
etransclem10.j φ J
Assertion etransclem10 φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0

Proof

Step Hyp Ref Expression
1 etransclem10.n φ P
2 etransclem10.m φ M 0
3 etransclem10.c φ C : 0 M 0 N
4 etransclem10.j φ J
5 0zd φ P 1 < C 0 0
6 0zd φ 0
7 nnm1nn0 P P 1 0
8 1 7 syl φ P 1 0
9 8 nn0zd φ P 1
10 nn0uz 0 = 0
11 2 10 eleqtrdi φ M 0
12 eluzfz1 M 0 0 0 M
13 11 12 syl φ 0 0 M
14 3 13 ffvelrnd φ C 0 0 N
15 14 elfzelzd φ C 0
16 9 15 zsubcld φ P - 1 - C 0
17 6 9 16 3jca φ 0 P 1 P - 1 - C 0
18 17 adantr φ ¬ P 1 < C 0 0 P 1 P - 1 - C 0
19 15 zred φ C 0
20 19 adantr φ ¬ P 1 < C 0 C 0
21 8 nn0red φ P 1
22 21 adantr φ ¬ P 1 < C 0 P 1
23 simpr φ ¬ P 1 < C 0 ¬ P 1 < C 0
24 20 22 23 nltled φ ¬ P 1 < C 0 C 0 P 1
25 22 20 subge0d φ ¬ P 1 < C 0 0 P - 1 - C 0 C 0 P 1
26 24 25 mpbird φ ¬ P 1 < C 0 0 P - 1 - C 0
27 elfzle1 C 0 0 N 0 C 0
28 14 27 syl φ 0 C 0
29 28 adantr φ ¬ P 1 < C 0 0 C 0
30 22 20 subge02d φ ¬ P 1 < C 0 0 C 0 P - 1 - C 0 P 1
31 29 30 mpbid φ ¬ P 1 < C 0 P - 1 - C 0 P 1
32 18 26 31 jca32 φ ¬ P 1 < C 0 0 P 1 P - 1 - C 0 0 P - 1 - C 0 P - 1 - C 0 P 1
33 elfz2 P - 1 - C 0 0 P 1 0 P 1 P - 1 - C 0 0 P - 1 - C 0 P - 1 - C 0 P 1
34 32 33 sylibr φ ¬ P 1 < C 0 P - 1 - C 0 0 P 1
35 permnn P - 1 - C 0 0 P 1 P 1 ! P - 1 - C 0 !
36 34 35 syl φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 !
37 36 nnzd φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 !
38 4 adantr φ ¬ P 1 < C 0 J
39 16 adantr φ ¬ P 1 < C 0 P - 1 - C 0
40 elnn0z P - 1 - C 0 0 P - 1 - C 0 0 P - 1 - C 0
41 39 26 40 sylanbrc φ ¬ P 1 < C 0 P - 1 - C 0 0
42 zexpcl J P - 1 - C 0 0 J P - 1 - C 0
43 38 41 42 syl2anc φ ¬ P 1 < C 0 J P - 1 - C 0
44 37 43 zmulcld φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0
45 5 44 ifclda φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0