Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
e is transcendental
etransclem12
Next ⟩
etransclem13
Metamath Proof Explorer
Ascii
Unicode
Theorem
etransclem12
Description:
C
applied to
N
.
(Contributed by
Glauco Siliprandi
, 5-Apr-2020)
Ref
Expression
Hypotheses
etransclem12.1
⊢
C
=
n
∈
ℕ
0
⟼
c
∈
0
…
n
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
n
etransclem12.2
⊢
φ
→
N
∈
ℕ
0
Assertion
etransclem12
⊢
φ
→
C
⁡
N
=
c
∈
0
…
N
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
N
Proof
Step
Hyp
Ref
Expression
1
etransclem12.1
⊢
C
=
n
∈
ℕ
0
⟼
c
∈
0
…
n
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
n
2
etransclem12.2
⊢
φ
→
N
∈
ℕ
0
3
oveq2
⊢
n
=
N
→
0
…
n
=
0
…
N
4
3
oveq1d
⊢
n
=
N
→
0
…
n
0
…
M
=
0
…
N
0
…
M
5
eqeq2
⊢
n
=
N
→
∑
j
=
0
M
c
⁡
j
=
n
↔
∑
j
=
0
M
c
⁡
j
=
N
6
4
5
rabeqbidv
⊢
n
=
N
→
c
∈
0
…
n
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
n
=
c
∈
0
…
N
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
N
7
ovex
⊢
0
…
N
0
…
M
∈
V
8
7
rabex
⊢
c
∈
0
…
N
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
N
∈
V
9
8
a1i
⊢
φ
→
c
∈
0
…
N
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
N
∈
V
10
1
6
2
9
fvmptd3
⊢
φ
→
C
⁡
N
=
c
∈
0
…
N
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
N