Metamath Proof Explorer


Theorem etransclem14

Description: Value of the term T , when J = 0 and ( C0 ) = P - 1 (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem14.n φ P
etransclem14.m φ M 0
etransclem14.c φ C : 0 M 0 N
etransclem14.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
etransclem14.j φ J = 0
etransclem14.cpm1 φ C 0 = P 1
Assertion etransclem14 φ T = N ! j = 0 M C j ! P 1 ! j = 1 M if P < C j 0 P ! P C j ! j P C j

Proof

Step Hyp Ref Expression
1 etransclem14.n φ P
2 etransclem14.m φ M 0
3 etransclem14.c φ C : 0 M 0 N
4 etransclem14.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
5 etransclem14.j φ J = 0
6 etransclem14.cpm1 φ C 0 = P 1
7 fzssre 0 N
8 nn0uz 0 = 0
9 2 8 eleqtrdi φ M 0
10 eluzfz1 M 0 0 0 M
11 9 10 syl φ 0 0 M
12 3 11 ffvelrnd φ C 0 0 N
13 7 12 sselid φ C 0
14 6 13 eqeltrrd φ P 1
15 13 14 lttri3d φ C 0 = P 1 ¬ C 0 < P 1 ¬ P 1 < C 0
16 6 15 mpbid φ ¬ C 0 < P 1 ¬ P 1 < C 0
17 16 simprd φ ¬ P 1 < C 0
18 17 iffalsed φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 ! P - 1 - C 0 ! J P - 1 - C 0
19 14 recnd φ P 1
20 6 eqcomd φ P 1 = C 0
21 19 20 subeq0bd φ P - 1 - C 0 = 0
22 21 fveq2d φ P - 1 - C 0 ! = 0 !
23 fac0 0 ! = 1
24 22 23 eqtrdi φ P - 1 - C 0 ! = 1
25 24 oveq2d φ P 1 ! P - 1 - C 0 ! = P 1 ! 1
26 nnm1nn0 P P 1 0
27 1 26 syl φ P 1 0
28 27 faccld φ P 1 !
29 28 nncnd φ P 1 !
30 29 div1d φ P 1 ! 1 = P 1 !
31 25 30 eqtrd φ P 1 ! P - 1 - C 0 ! = P 1 !
32 5 21 oveq12d φ J P - 1 - C 0 = 0 0
33 0exp0e1 0 0 = 1
34 32 33 eqtrdi φ J P - 1 - C 0 = 1
35 31 34 oveq12d φ P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 ! 1
36 29 mulid1d φ P 1 ! 1 = P 1 !
37 18 35 36 3eqtrd φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 !
38 5 oveq1d φ J j = 0 j
39 df-neg j = 0 j
40 38 39 eqtr4di φ J j = j
41 40 oveq1d φ J j P C j = j P C j
42 41 oveq2d φ P ! P C j ! J j P C j = P ! P C j ! j P C j
43 42 ifeq2d φ if P < C j 0 P ! P C j ! J j P C j = if P < C j 0 P ! P C j ! j P C j
44 43 prodeq2ad φ j = 1 M if P < C j 0 P ! P C j ! J j P C j = j = 1 M if P < C j 0 P ! P C j ! j P C j
45 37 44 oveq12d φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = P 1 ! j = 1 M if P < C j 0 P ! P C j ! j P C j
46 45 oveq2d φ N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = N ! j = 0 M C j ! P 1 ! j = 1 M if P < C j 0 P ! P C j ! j P C j
47 4 46 eqtrid φ T = N ! j = 0 M C j ! P 1 ! j = 1 M if P < C j 0 P ! P C j ! j P C j