Metamath Proof Explorer


Theorem etransclem15

Description: Value of the term T , when J = 0 and ( C0 ) = P - 1 (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem15.p φ P
etransclem15.m φ M 0
etransclem15.n φ N 0
etransclem15.c φ C : 0 M 0 N
etransclem15.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
etransclem15.j φ J = 0
etransclem15.cpm1 φ C 0 P 1
Assertion etransclem15 φ T = 0

Proof

Step Hyp Ref Expression
1 etransclem15.p φ P
2 etransclem15.m φ M 0
3 etransclem15.n φ N 0
4 etransclem15.c φ C : 0 M 0 N
5 etransclem15.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
6 etransclem15.j φ J = 0
7 etransclem15.cpm1 φ C 0 P 1
8 5 a1i φ T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
9 iftrue P 1 < C 0 if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = 0
10 9 adantl φ P 1 < C 0 if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = 0
11 iffalse ¬ P 1 < C 0 if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 ! P - 1 - C 0 ! J P - 1 - C 0
12 11 adantl φ ¬ P 1 < C 0 if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 ! P - 1 - C 0 ! J P - 1 - C 0
13 6 oveq1d φ J P - 1 - C 0 = 0 P - 1 - C 0
14 13 adantr φ ¬ P 1 < C 0 J P - 1 - C 0 = 0 P - 1 - C 0
15 1 nnzd φ P
16 1zzd φ 1
17 15 16 zsubcld φ P 1
18 nn0uz 0 = 0
19 2 18 eleqtrdi φ M 0
20 eluzfz1 M 0 0 0 M
21 19 20 syl φ 0 0 M
22 4 21 ffvelrnd φ C 0 0 N
23 22 elfzelzd φ C 0
24 17 23 zsubcld φ P - 1 - C 0
25 24 adantr φ ¬ P 1 < C 0 P - 1 - C 0
26 23 zred φ C 0
27 26 adantr φ ¬ P 1 < C 0 C 0
28 17 zred φ P 1
29 28 adantr φ ¬ P 1 < C 0 P 1
30 simpr φ ¬ P 1 < C 0 ¬ P 1 < C 0
31 27 29 30 nltled φ ¬ P 1 < C 0 C 0 P 1
32 7 necomd φ P 1 C 0
33 32 adantr φ ¬ P 1 < C 0 P 1 C 0
34 27 29 31 33 leneltd φ ¬ P 1 < C 0 C 0 < P 1
35 27 29 posdifd φ ¬ P 1 < C 0 C 0 < P 1 0 < P - 1 - C 0
36 34 35 mpbid φ ¬ P 1 < C 0 0 < P - 1 - C 0
37 elnnz P - 1 - C 0 P - 1 - C 0 0 < P - 1 - C 0
38 25 36 37 sylanbrc φ ¬ P 1 < C 0 P - 1 - C 0
39 38 0expd φ ¬ P 1 < C 0 0 P - 1 - C 0 = 0
40 14 39 eqtrd φ ¬ P 1 < C 0 J P - 1 - C 0 = 0
41 40 oveq2d φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = P 1 ! P - 1 - C 0 ! 0
42 nnm1nn0 P P 1 0
43 1 42 syl φ P 1 0
44 43 faccld φ P 1 !
45 44 nncnd φ P 1 !
46 45 adantr φ ¬ P 1 < C 0 P 1 !
47 38 nnnn0d φ ¬ P 1 < C 0 P - 1 - C 0 0
48 47 faccld φ ¬ P 1 < C 0 P - 1 - C 0 !
49 48 nncnd φ ¬ P 1 < C 0 P - 1 - C 0 !
50 48 nnne0d φ ¬ P 1 < C 0 P - 1 - C 0 ! 0
51 46 49 50 divcld φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 !
52 51 mul01d φ ¬ P 1 < C 0 P 1 ! P - 1 - C 0 ! 0 = 0
53 12 41 52 3eqtrd φ ¬ P 1 < C 0 if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = 0
54 10 53 pm2.61dan φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 = 0
55 54 oveq1d φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
56 6 21 eqeltrd φ J 0 M
57 1 4 56 etransclem7 φ j = 1 M if P < C j 0 P ! P C j ! J j P C j
58 57 zcnd φ j = 1 M if P < C j 0 P ! P C j ! J j P C j
59 58 mul02d φ 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = 0
60 55 59 eqtrd φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = 0
61 60 oveq2d φ N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = N ! j = 0 M C j ! 0
62 3 faccld φ N !
63 62 nncnd φ N !
64 fzfid φ 0 M Fin
65 fzssnn0 0 N 0
66 4 ffvelrnda φ j 0 M C j 0 N
67 65 66 sselid φ j 0 M C j 0
68 67 faccld φ j 0 M C j !
69 68 nncnd φ j 0 M C j !
70 64 69 fprodcl φ j = 0 M C j !
71 68 nnne0d φ j 0 M C j ! 0
72 64 69 71 fprodn0 φ j = 0 M C j ! 0
73 63 70 72 divcld φ N ! j = 0 M C j !
74 73 mul01d φ N ! j = 0 M C j ! 0 = 0
75 8 61 74 3eqtrd φ T = 0