Metamath Proof Explorer


Theorem etransclem16

Description: Every element in the range of C is a finite set. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem16.c C = n 0 c 0 n 0 M | j = 0 M c j = n
etransclem16.n φ N 0
Assertion etransclem16 φ C N Fin

Proof

Step Hyp Ref Expression
1 etransclem16.c C = n 0 c 0 n 0 M | j = 0 M c j = n
2 etransclem16.n φ N 0
3 1 2 etransclem12 φ C N = c 0 N 0 M | j = 0 M c j = N
4 fzfi 0 N Fin
5 fzfi 0 M Fin
6 mapfi 0 N Fin 0 M Fin 0 N 0 M Fin
7 4 5 6 mp2an 0 N 0 M Fin
8 ssrab2 c 0 N 0 M | j = 0 M c j = N 0 N 0 M
9 ssfi 0 N 0 M Fin c 0 N 0 M | j = 0 M c j = N 0 N 0 M c 0 N 0 M | j = 0 M c j = N Fin
10 7 8 9 mp2an c 0 N 0 M | j = 0 M c j = N Fin
11 3 10 eqeltrdi φ C N Fin