Metamath Proof Explorer


Theorem etransclem18

Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem18.s φ
etransclem18.x φ TopOpen fld 𝑡
etransclem18.p φ P
etransclem18.m φ M 0
etransclem18.f F = x x P 1 j = 1 M x j P
etransclem18.a φ A
etransclem18.b φ B
Assertion etransclem18 φ x A B e x F x 𝐿 1

Proof

Step Hyp Ref Expression
1 etransclem18.s φ
2 etransclem18.x φ TopOpen fld 𝑡
3 etransclem18.p φ P
4 etransclem18.m φ M 0
5 etransclem18.f F = x x P 1 j = 1 M x j P
6 etransclem18.a φ A
7 etransclem18.b φ B
8 ioossicc A B A B
9 8 a1i φ A B A B
10 ioombl A B dom vol
11 10 a1i φ A B dom vol
12 ere e
13 12 recni e
14 13 a1i φ x A B e
15 6 7 iccssred φ A B
16 15 sselda φ x A B x
17 16 recnd φ x A B x
18 17 negcld φ x A B x
19 14 18 cxpcld φ x A B e x
20 1 2 dvdmsscn φ
21 20 3 5 etransclem8 φ F :
22 21 adantr φ x A B F :
23 22 16 ffvelrnd φ x A B F x
24 19 23 mulcld φ x A B e x F x
25 eqidd φ x A B y e y = y e y
26 oveq2 y = x e y = e x
27 26 adantl φ x A B y = x e y = e x
28 15 20 sstrd φ A B
29 28 sselda φ x A B x
30 29 negcld φ x A B x
31 13 a1i x e
32 negcl x x
33 31 32 cxpcld x e x
34 29 33 syl φ x A B e x
35 25 27 30 34 fvmptd φ x A B y e y x = e x
36 35 eqcomd φ x A B e x = y e y x
37 36 mpteq2dva φ x A B e x = x A B y e y x
38 epr e +
39 mnfxr −∞ *
40 39 a1i e + −∞ *
41 0red e + 0
42 rpxr e + e *
43 rpgt0 e + 0 < e
44 40 41 42 43 gtnelioc e + ¬ e −∞ 0
45 38 44 ax-mp ¬ e −∞ 0
46 eldif e −∞ 0 e ¬ e −∞ 0
47 13 45 46 mpbir2an e −∞ 0
48 cxpcncf2 e −∞ 0 y e y : cn
49 47 48 mp1i φ y e y : cn
50 eqid x A B x = x A B x
51 50 negcncf A B x A B x : A B cn
52 28 51 syl φ x A B x : A B cn
53 49 52 cncfmpt1f φ x A B y e y x : A B cn
54 37 53 eqeltrd φ x A B e x : A B cn
55 ax-resscn
56 55 a1i φ x A B
57 3 adantr φ x A B P
58 4 adantr φ x A B M 0
59 etransclem6 x x P 1 j = 1 M x j P = y y P 1 k = 1 M y k P
60 5 59 eqtri F = y y P 1 k = 1 M y k P
61 56 57 58 60 16 etransclem13 φ x A B F x = k = 0 M x k if k = 0 P 1 P
62 61 mpteq2dva φ x A B F x = x A B k = 0 M x k if k = 0 P 1 P
63 fzfid φ 0 M Fin
64 17 3adant3 φ x A B k 0 M x
65 elfzelz k 0 M k
66 65 zcnd k 0 M k
67 66 3ad2ant3 φ x A B k 0 M k
68 64 67 subcld φ x A B k 0 M x k
69 nnm1nn0 P P 1 0
70 3 69 syl φ P 1 0
71 3 nnnn0d φ P 0
72 70 71 ifcld φ if k = 0 P 1 P 0
73 72 3ad2ant1 φ x A B k 0 M if k = 0 P 1 P 0
74 68 73 expcld φ x A B k 0 M x k if k = 0 P 1 P
75 nfv x φ k 0 M
76 ssid
77 76 a1i φ
78 28 77 idcncfg φ x A B x : A B cn
79 78 adantr φ k 0 M x A B x : A B cn
80 28 adantr φ k 0 M A B
81 66 adantl φ k 0 M k
82 76 a1i φ k 0 M
83 80 81 82 constcncfg φ k 0 M x A B k : A B cn
84 79 83 subcncf φ k 0 M x A B x k : A B cn
85 expcncf if k = 0 P 1 P 0 y y if k = 0 P 1 P : cn
86 72 85 syl φ y y if k = 0 P 1 P : cn
87 86 adantr φ k 0 M y y if k = 0 P 1 P : cn
88 oveq1 y = x k y if k = 0 P 1 P = x k if k = 0 P 1 P
89 75 84 87 82 88 cncfcompt2 φ k 0 M x A B x k if k = 0 P 1 P : A B cn
90 28 63 74 89 fprodcncf φ x A B k = 0 M x k if k = 0 P 1 P : A B cn
91 62 90 eqeltrd φ x A B F x : A B cn
92 54 91 mulcncf φ x A B e x F x : A B cn
93 cniccibl A B x A B e x F x : A B cn x A B e x F x 𝐿 1
94 6 7 92 93 syl3anc φ x A B e x F x 𝐿 1
95 9 11 24 94 iblss φ x A B e x F x 𝐿 1